94 research outputs found

    Early-stage reciprocity in sustainable scientific collaboration

    Get PDF
    Scientific collaboration is of significant importance in tackling grand challenges and breeding innovations. Despite the increasing interest in investigating and promoting scientific collaborations, we know little about the collaboration sustainability as well as mechanisms behind it. In this paper, we set out to study the relationships between early-stage reciprocity and collaboration sustainability. By proposing and defining h-index reciprocity, we give a comprehensive statistical analysis on how reciprocity influences scientific collaboration sustainability, and find that scholars are not altruism and the key to sustainable collaboration is fairness. The unfair h-index reciprocity has an obvious negative impact on collaboration sustainability. The bigger the reciprocity difference, the less sustainable in collaboration. This work facilitates understanding sustainable collaborations and thus will benefit both individual scholar in optimizing collaboration strategies and the whole academic society in improving teamwork efficiency. © 2020 Elsevier Ltd.The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-78. This work is partially supported by China Postdoctoral Science Foundation ( 2019M651115 )

    Motifs in big networks : methods and applications

    Get PDF
    Motifs have been recognized as basic network blocks and are found to be quite powerful in modeling certain patterns. Generally speaking, local characteristics of big networks could be reflected in network motifs. Over the years, motifs have attracted a lot of attention from researchers. However, most current literature reviews on motifs generally focus on the field of biological science. In contrast, here we try to present a comprehensive survey on motifs in the context of big networks. We introduce the definition of motifs and other related concepts. Big networks with motif-based structures are analyzed. Specifically, we respectively analyze four kinds of networks, including biological networks, social networks, academic networks, and infrastructure networks. We then examine methods for motif discovery, motif counting, and motif clustering. The applications of motifs in different areas have also been reviewed. Finally, some challenges and open issues in this direction are discussed. © 2013 IEEE

    Multimodal educational data fusion for students' mental health detection

    Get PDF
    Mental health issues can lead to serious consequences like depression, self-mutilation, and worse, especially for university students who are not physically and mentally mature. Not all students with poor mental health are aware of their situation and actively seek help. Proactive detection of mental problems is a critical step in addressing this issue. However, accurate detections are hard to achieve due to the inherent complexity and heterogeneity of unstructured multi-modal data generated by campus life. Against this background, we propose a detection framework for detecting students' mental health, named CASTLE (educational data fusion for mental health detection). Three parts are involved in this framework. First, we utilize representation learning to fuse data on social life, academic performance, and physical appearance. An algorithm, named MOON (multi-view social network embedding), is proposed to represent students' social life in a comprehensive way by fusing students' heterogeneous social relations effectively. Second, a synthetic minority oversampling technique algorithm (SMOTE) is applied to the label imbalance issue. Finally, a DNN (deep neural network) model is utilized for the final detection. The extensive results demonstrate the promising performance of the proposed methods in comparison to an extensive range of state-of-the-art baselines. © 2013 IEEE

    Impossible Differential Cryptanalysis of Reduced-Round SKINNY

    Get PDF
    SKINNY is a new lightweight tweakable block cipher family proposed by Beierle etet alal. in CRYPTO 2016. SKINNY-nn-tt is a block cipher with nn-bit state and tt-bit tweakey (key and tweak). It is designed to compete with the recent NSA SIMON block cipher. In this paper, we present impossible differential attacks against reduced-round versions of all the 6 SKINNY\u27s variants, namely, SKINNY-nn-nn, SKINNY-nn-2nn and SKINNY-nn-3nn (n=64n=64 or n=128n=128) in the single-tweakey model. More precisely, we present impossible differential attacks against 18, 20 and 22 rounds of SKINNY-nn-nn, SKINNY-nn-2nn and SKINNY-nn-3nn (n=64n=64 or n=128n=128), respectively. These attacks are based on the same 11-round impossible differential distinguisher. To the best of our knowledge, these are the best attacks against these 6 variants of the cipher in the single-tweakey model

    Emergency warning messages dissemination in vehicular social networks: A trust based scheme

    Get PDF
    To ensure users' safety on the road, a plethora of dissemination schemes for Emergency Warning Messages (EWMs) have been proposed in vehicular networks. However, the issue of false alarms triggered by malicious users still poses serious challenges, such as disruption of vehicular traffic especially on highways leading to precarious effects. This paper proposes a novel Trust based Dissemination Scheme (TDS) for EWMs in Vehicular Social Networks (VSNs) to solve the aforementioned issue. To ensure the authenticity of EWMs, we exploit the user-post credibility network for identifying true and false alarms. Moreover, we develop a reputation mechanism by calculating a trust-score for each node based on its social-utility, behavior, and contribution in the network. We utilize the hybrid architecture of VSNs by employing social-groups based dissemination in Vehicle-to-Infrastructure (V2I) mode, whereas nodes' friendship-network in Vehicle-to-Vehicle (V2V) mode. We analyze the proposed scheme for accuracy by extensive simulations under varying malicious nodes ratio in the network. Furthermore, we compare the efficiency of TDS with state-of-the-art dissemination schemes in VSNs for delivery ratio, transmission delay, number of transmissions, and hop-count. The experimental results validate the significant efficacy of TDS in accuracy and aforementioned network parameters. © 2019 Elsevier Inc

    TOSNet : a topic-based optimal subnetwork identification in academic networks

    Get PDF
    Subnetwork identification plays a significant role in analyzing, managing, and comprehending the structure and functions in big networks. Numerous approaches have been proposed to solve the problem of subnetwork identification as well as community detection. Most of the methods focus on detecting communities by considering node attributes, edge information, or both. This study focuses on discovering subnetworks containing researchers with similar or related areas of interest or research topics. A topic- aware subnetwork identification is essential to discover potential researchers on particular research topics and provide qualitywork. Thus, we propose a topic-based optimal subnetwork identification approach (TOSNet). Based on some fundamental characteristics, this paper addresses the following problems: 1)How to discover topic-based subnetworks with a vigorous collaboration intensity? 2) How to rank the discovered subnetworks and single out one optimal subnetwork? We evaluate the performance of the proposed method against baseline methods by adopting the modularity measure, assess the accuracy based on the size of the identified subnetworks, and check the scalability for different sizes of benchmark networks. The experimental findings indicate that our approach shows excellent performance in identifying contextual subnetworks that maintain intensive collaboration amongst researchers for a particular research topic. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved

    Relational structure-aware knowledge graph representation in complex space

    Get PDF
    Relations in knowledge graphs have rich relational structures and various binary relational patterns. Various relation modelling strategies are proposed for embedding knowledge graphs, but they fail to fully capture both features of relations, rich relational structures and various binary relational patterns. To address the problem of insufficient embedding due to the complexity of the relations, we propose a novel knowledge graph representation model in complex space, namely MARS, to exploit complex relations to embed knowledge graphs. MARS takes the mechanisms of complex numbers and message-passing and then embeds triplets into relation-specific complex hyperplanes. Thus, MARS can well preserve various relation patterns, as well as structural information in knowledge graphs. In addition, we find that the scores generated from the score function approximate a Gaussian distribution. The scores in the tail cannot effectively represent triplets. To address this particular issue and improve the precision of embeddings, we use the standard deviation to limit the dispersion of the score distribution, resulting in more accurate embeddings of triplets. Comprehensive experiments on multiple benchmarks demonstrate that our model significantly outperforms existing state-of-the-art models for link prediction and triple classification. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    • …
    corecore